Plankton community in Lam Se Bai in dry season

C. Srithong, Y. Fujioka¹, J. Higano¹ and H. Kuwahara²

Faculty of Fisheries, Kasetsart University, Bangkhen, Bangkok, Thailand, ¹National Research Institute of Aquaculture, Fisheries Research Agency, Minami-Ise, Mie, Japan, ²National Research Institute of Fisheries Engineering, Fisheries Research Agency, Kamisu, Ibaraki, Japan, E-mail: ffiscps@ku.ac.th

Abstract: Qualitative aspect of the plankton in Lam Se Bai Canel was studied during dry season in April 2009. Plankton samples were collected by towing plankton nets of mesh size 21 µm, from 8 stations at the middle depth of canal. A total of 109 species in 3 division of phytoplankton recorded comprised of 15 species of Cyanophyta, 70 species of Chlorophyta, 24 species of Chromophyta and a total of 63 species in 3 phylum of zooplankton recorded comprised of 14 species of Protozoa, 42 species of Rotifera, 7 species of Arthropoda. The genera of phytoplankton as *Chroococcus, Oscillatoria, Lepocinclis, Phacus, Strombomonas* and *Trachelomonas* and the genera of zooplankton as *Polyarthra* and *Diffugia* were frequently found in large number.

Key words: Plankton, Lam Se Bai, dry season.

Introduction

Plankton is the crucial part of aquaitic food chain. As the primary producer, phytoplankton converts inorganic matters into organic compounds though photosynthesis, enabling transfers of energy and nutrients to zooplankton and other aquatic animals in the food chain. Each species of plankton inhabits in different evironments. Some live in areas with high concentration of organic matters, others are found in reservoirs with moderate concentration of organic matter while a number of species thrive in environment with little organic matter. Some phytoplankton species can thus be used as water quality index. Most plankton has short life cycle and can quickly respond to changing environment. (Hanpongkittikul and Wongrat, 2005); (Pradissan, 2000); (Revnolds, 1984)

Lum Se Bai is a small branch of the Mun river which is one of the Mekong river, The total length of Lum Se Bai is 233 km, Water level of Lam Se Bai is controlled by two small irrigation dams, that is, Lam Se Bai weir in the upper area and Amnat Charoen weir in the lower area. They were constructed to supply water for irrigation. Along Lam Se Bai have many riparian freshwater swamp forests, where are nursing fisheries resources with supplying potential source of food and breeding sites or shelter even though they have different frequency and period of flooding. Fisheries products are the important natural resources and fisheries activities of fishermen from every village that located along Lam Se Bai.

The purposes of this study are to investigate the species composition of plankton in Lam Se Bai, and whether there are temporal and spatial variation of phytoplankton and zooplankton community in the study area. Results of this study can be used as baseline for furture diversity and ecological studies. And also qualitative of the plankton from this studies are used for indicator of primary productivity in Lam Se Bai.

Materials and Methods

Study sites: Lam Se Bai is a small branch of the Mun river, origin from border of Mukdaharn province and pass though Yasotorn, Amnat Jaroen and joint with Mon river at Ubol Rattanee province. Lam Se Bai have two small irrigation dams, that is Lam Se Bai weir in the upper area and Amnat Charoen weir in the lower area. Eight sampling stations were used in the study to ensure proper coverage from upstream area to downstream area (Fig. 1). These stations selection is based on 4 reasons; near main survey site (Na Kae village), near dam or reservoirs, easily sampling (mainly on bridge) and moderate distance each other.

Sampling methods: Samples were collected during 2009, April before raining season when water from upper stream flood over the riparian freshwater swamp forests along Lam Se Bai. Plankton net with mesh size 21 µm were used in collecting samples with oblique tow technique. Plankton samples were preserved with 4% formaldehyde solution. Olympus CX31 microscopes and Sedgwick-Rafter slides were used in studying species indentification. Species classification of the samples was mainly based on Wongrat (1999a and 1999b).

Fig. 1. Study site in Lam Se Bai

Results and Discussion

The study of plankton community in Lam Se Bai, we found 3 division phytoplankton, 54 genera, 109 species (Table 1). Most of species found belonged to Class Chlorophyceae (green algae) which had the highest number of species with 23 genera 51 species (47%), followed by Class Euglenophyceae (euglenoids) with 5 genera 19 species (17%), Class Bacillariophyceae (diatom) with 12 genera 16 species (15%), Class Cyanophyceae (blue green algae) with 8 genera 15 species (14%), Class Dinophyceae (dinoflagellates) with 3 genera 4 species (4%) and Class Chrysophyceae with 3 genera 4 species (4%), respectively (Fig. 2A).

Table 1. L	ist of phy	oplankton found	l in Lam Se H	3ai in dry season
------------	------------	-----------------	---------------	-------------------

Division Cyanophyta	Class Euglenophyceae			
Class Cyanophyceae	Order Euglenales			
Order Chroococcales	Euglena acus Ehrenberg			
Family Chroococcaceae	Euglena ehrenbergu Klebs			
Chroococcus minutus (Kutzing) Naegeli	Euglena spirogyra Enrenberg			
Chroococcus turgidus (Kutzing) Naegeli	Lepocincus ovum (Enrenberg) Lemmermann			
Chroococcus sp	Lepocinclis sp.			
Gleocapsa granosa Kutzing (Berk)	Phacus helikoides Pochmann			
Merismopedia punctata Meyen	Phacus longicauda (Ehrenberg) Dujardin			
Order Nostocales	Phacus pleuronectes (O.F.M.) Dujardin			
Family Oscillatoriaceae	Phacus ranula Pochmann			
Lyngbya limnetica Lemmermann	Strombomonas australica Deflandre			
Oscillatoria sp.8344	Strombomonas girardidna Deflandre			
Spirulina sp. 8715	Strombomonas fluviatilis Deflandre			
Family Nostocaceae	Trachelomonas crebea Kellicatt			
Anabaena sp.	Trachelomonas dangeardiana Deflandre			
Anabaena affinis Lemmermann	Trachelomonas hispida (Perty) Stein			
Anabaena occillarioides Bory	Trachelomonas mirabilis Swirenko			
Anabaenopsis elenkinii V. Miller	Trachelomonas oblonga Lemmermann			
Anabaenopsis raciborski Woloszynskt	Trachelomonas similis Stokes			
Division Chlorophyta	Trachelomonas superba Swirenko			
Class Chlorophyceae	Division Chromophyta			
Order Volvocales	Class Bacillariophyceae			
Family Volvocaceae	Order Pennales			
Eudorina cylindrica	Suborder Araphidinia			
Eudorina elegans Ehrenberg	Family Diatomaceae			
Pandorina morum (Müller) Bory	Synedra rumpens Kutzing			
Order Tetrasporales	Synedra ulna (Nitzsch) Ehrenberg			
Sphaerocystis shroeteri Chodat	Suborder Raphioidinia			
Order Chlorococcales	Family Eunotiaceae			
Family Chlorococcaceae	Functia sp			
A canthospeara sp	Suborder Biranhidinia			
Ankistrodesmus sp.	Family Naviculaceae			
Family Hydrodictyaceae	Diplonais sp 1 8600			
Padiastrum homanum (Turnin) Monoghini	Entomonois sp.			
Pediastrum dorlan Moyan	Emotolia imparios Unstadt			
Pediastrum duplex Meyer	<i>Frusiuna javanica</i> Hustedi			
Pediastrum auplex var. clathratum (A. Braun)	Gyrosigma sp.			
Pediastrum aupiex var. graciumum west & west	Gomphonema parvulum (Kutzing) Grunow			
Pediastrum simplex var. duodenarium (Balley)	Navicula sp.1			
Family Coelastraceae	Navicula sp.2			
Coelastrum microporum Naegeli	Navicula bacillum Ehrenberg			
Coelastrum scabrum Reinsch	Pinnularia gibba Ehrenberg			
Coelastrum sphaericum Naegeli	Diatom sp.8637			
Family Botryococcaceae	Family Nitzschiaceae			
Botryococcus braunii Kuetzing	Bacillaria paradoxa Gmelin			
Family Oocystaceae	Nitzschia sp.			
Crucigenia apiculata (Lemmermann)	Family Surirellaceae			
Crucigenia rectangularis (A. Braun) Gay	Surirella robusta Ehrenberg			
Crucigenia truncate G.M. Smith	Class Chrysophyceae			
Micractinium sp.	Order Mischococcales			
Oocystis elliptica W. West	Family Sciadaceae			
Oocystis parva West&West	Centritractus belanophorus Lemmermann			
Oocystis sp.	Order Ochromodales			
Nephrocytium limneticum (G.M. Smith)	Mallomonas splendens (G.S. West) Playfair			
Tetraedron gracile (Reinsch) Hansgirg	Mallomonas sp.			
Tetraedron trigonum (Naegeli) Hansgirg	Family Dinobryaceae			
Scenedesmus acuminatus (Lagerheim)	Dinobryon sp.			
Scenedesmus denticulatus Lagerheim	Class Dinophyceae			
Scenedesmus dimorplus (Turpin) Kutzing	Order Peridiniales			
Scenedesmus disnar	Family Peridiniaceae			
Scenedesmus obliguus (Turpin) Kutzing	Peridinium sp.			
Scenedesmus audricauda (Turpin)	Family Glenodiniaceae			
Selenastrum sp	Glenodinium sp			
Order Ulotrichales	Order Gonvaulacales			
Illothring sp	Family Ceratiaceae			
Order Zugnematales	Coratium hiraus Schrodor			
Family Zygnemataceae	Ceruman micus Schiodel			
Spiropura daadalaaidaa Caurda				
Spirogyra adeadleoldes Czulda				
Spirogyra grauna Iranscan				
<i>Spirogyra weberi</i> Kutzing				

Table 2. List of zooplankton found in Lam Se Bai in dry season

Phylum Protozoa Subphylum Sarcodina Superclass Rhizopoda Class Lobosa Order Arcellinida Family Arcellidae Arcella discoides Ehrenberg Arcella vulgaris Ehrenberg Family Centropyxidae Centropyxis sp. Family Difflugiidae Difflugia acuminate Ehrenberg Difflugia urceolata Carter Diffugia sp. Class Filosia Order Aconchulinida Family Euglyphidae Euglypha sp Subphylum Mycetozoa Superclass Acanthophractida Class Heliozoa Order Actinophryida Family Actinosphaeridae Ehr. Actinosphaerium eichhorni Ehrenberg Subphylum Ciliophora Class Ciliata Subclass Holotricha Order Gymnostomatida Family Colepidae Coleps sp. Subclass Spirotricha Order Tintinnida Family Codonellidae Codonella sp. Family Codonellopsidae Codonellopsis sp. Class Oligohymenophorea Subclass Peritrichia Order Sessilida Family Epistylidae Epistylis sp. Family Vaginicolidae Pvxicola sp. Family Vorticellidae Vorticella sp. Phylum Rotifera Class Eurotatoria Subclass Monogononta Order Ploima Family Brachionidae Anuraeopsis coelata (Beauchamp) Anuraeopsis navicula (Rousselet) Brachionus angularis Gosse Brachionus donneri Brehm Brachionus caudatus Barrois and Daday Brachionus falcatus Zacharias Brachionus forficula Wierzejski Colurella sp. Keratella cochlearis Gosse Keratella lenzi (Berzins) Keratella tropica (Apstein) Keratella valga Carlin Macrochaetus sp.

Family Lecannidae Lecane hastata (Murray) Lecane leontina (Turner) Lecane obtuse (Murray) Lecane papuana (Murray) Lecane signifera (Jennings) Lecane thienemanni (Hauer) Lecane sp. Lecane sp. Family Notommatidae Monommata sp. Family Trichocercidae Trichoceca capucina (Wierzn. And Zach.) Trichoceca cylindrical (Imhof) Trichoceca similes (Wierzejski) Trichoceca sp. Family Gastropodidae Ascomopha sp Family Asplanchnidae Asplanchna brightwelli (Gosse) Asplanchna sp. Family Synchaetidae Polyarthra vulgaris Carlin Synchaeta pachypoda Jaschnow Synchaeta sp. Ploesoma hudsoni Imhof Order Flosculariacea Family Testudinellidae Testudinella patina (Hermann) Filinia camasecla Myers Filinia longiseta (Ehrenberg) Filinia opoliensis (Zacharias) Filinia terminalis (Plate) Family Hexarthridae Hexathra sp. Order Collothecacea Family Collothecidae Collotheca sp. Phylum Arthropoda Class Crustacea Subclass Branchiopoda Order Diplostraca Suborder Cladocera Family Sididae Diaphanosoma sp. Family Bosminidae Bosminopsis deitersi Richard Family Chidoridae Subfamily Chydorinae Alonella sp. Unidentified Cladocerans Subclass Copepoda (copepods) Order Calanoida Unidentified Calanoid copepods Order Cyclopoida Unidentified Cyclopoid copepod Unidentified Copepod nauplius

The most diverse genus was *Trachelomonas* which was frequently occurred throughout the study with 7 species followed by *Scenedesmus* 6 species, *Pediastrum* and *Anabaena* 5 species. For zooplankton, we found 3 phylum, 34 genera, 63 species (Table 2). Most of species found belonged to Class Eurotatoria which had the highest number of species with 17 genera 42 species (67%), followed by Class Crustacea with 6 genera 7 species

(11%), Class Lobosa with 3 genera 6 species (9%), Class Ciliata with 3 genera 3 species (5%), Class Oligohymenophorea with 3 genera 3 species (5%), Class Filosia with 1 genera 1 species (1%) and Class Heliozoa with 1 genera 1 species (1%), respectively (Fig. 2B). The most diverse genus was *Lecane* which was frequently occurred throughout the study with 7 species followed by *Brachionus* 5 species, *Trichocera* and

Keratella 4 species The genera of phytoplankton as *Chroococcus*, *Oscillatoria*, *Lepocinclis*, *Phacus*, *Strombomonas* and *Trachelomonas* were the most common species being found in all stations. As the genera of zooplankton as *Polyarthra* and *Diffugia* were the most common species being found in all stations (Fig. 3A and 3B). The varietion of plankton in the investigate site is not

strong, unless station 7 (Upper of water gate of Amnat Cha roen weir) and station 8 (Lower of water gate of Amnat Cha roen weir), both investigates sites were separated by the water gates, found phytoplankton varietion of station 7 higer than station 8, because by the precipitate of sediment at upper site, effect on the high nutreint in water especially total ammonia. (Boyd. and Tucker. 1998).

Fig. 2. (A) Taxonomic structure of the phytoplankton in Lam Se Bai, (B) Taxonomic structure of the zooplankton in Lam Se Bai.

Fig. 3. (A) Spatial variations in species number of phytoplankton, (B) Spatial variations in species number of zooplankton.

				Total		
Station	BOD	Nitrite	Nitrate	Ammonia		Total Phosphate
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Ortro Phosphate (mg/L)	(mg/L)
Kud Chum	3.5	0.0054	0.0367	0.1337	0.0201	0.1355
Kudpeng	1.5	0.0098	0.0140	0.1891	0.0387	0.1093
Lam Se Bai Weir (upper water gates)	2.3	0.0042	0.0127	0.8158	0.0131	0.1051
Lum Sa Bai Weir (lower water gates)	2.0	0.0090	0.0509	0.1436	0.0221	0.1439
Nakae	1.2	0.0054	0.0147	0.1342	0.0304	0.1148
Khueang Nai	1.6	0.0062	0.0154	0.1254	0.0166	0.1093
Amnat Charoen Weir (upper water gates)	1.4	0.0057	0.0087	0.2648	0.0187	0.1065
Amnat Charoen Weir (lower water gates)	1.4	0.0056	0.0102	0.1186	0.0207	0.1037

Table 3. Comparison of water quality found in this study site

Normally the water stream along Lam Se Bai is stopped in dry season, causes by no rainfall occured around the study site for long time, result on the suspended particles settle to bottom, effect on water qaulity especially the turbidity is very low and some investigates site found the transparentcy value could not detected (water depth is very shallow). The varietion of water quality that concerning about nutrient of plankton such as ammonia, nitrate and orthophosphate is slight. Water quality data that shown in Table 3 is small value, because of the nutreint is absorbed by macrophytic algae that appeared along Lam Se Bai.

The taxon number of 109 species in phytoplankton, with the follow percentage: 47% Chlorophyceae, 17% 15% Bacillariophyceae. Euglenophyceae, 14% Cyanophyceae and 4% Dinophyceae and Chrysophyceae. And 63 species in zooplankton, with the follow percentage: 67% Eurotatoria, 11% Crustacea, 9% Lobosa, 5% Ciliata and Oligohymenophorea, and 1% Filosia and Heliozoa. The dominant species of phytoplankton were Chroococcus, Oscillatoria, Lepocinclis and Phacus was regularly observed all sampling station. As the dominant species of zooplankton were Polyarthra, Difflugia and copepod was regularly observed all sampling station.

The results provide useful knowledge on plankton community for further study (Rainning season) in Lam Se Bai, The studying on fluctuation of abandance of plankton all round year in Lam Se Bai lead to provide useful knowledge for primary productivity of this swanp area.

Acknowledgement: This work was supported by the Global Environment Research Fund (D-0902) of the Ministry of the Environment, Japan.

References

- Boyd, C.E. and C.S. Tucker. 1998. Pond aquaculture water quality management. Kluwer Academic Publishers. Netherlands. 700 p.
- Fujioka, Y., Higano, J., Kuwahara H., Srithong C., Tabuchi R., Patanaponpaiboon P. and Poungparn S., 2010. Fisheries resources in swamp forests - utilization of fisheries resources supported by swamp forests. Proceedings for International workshop " Local conservation and sustainable use of swamp forest in Tropical Asia, Ranong, Thailand, pp. 66-80.
- Hanpongkittikul, A. and L.Wongrat. 2005. Phytoplankton Community in the Pasak Jolasid Reservoir Lop Buri Province. Kasetsart University Fisheries Research Bulletin No. 28: 1-12.
- Pradissan, N. 2000. Relationships between Water Quality and Plankton Distribution in the Chao Phraya River. Thesis of Master Degree, Faculty of Fisheries Science. Kasetsart University, Bangkok 313 p. (In Thai)
- Reynolds, C.S. 1984. Ecology od phytoplankton. Cambridge University Press, Cambridge. 384 p.
- Wongrat, L. 1999a. Phytoplankton. Kasetsart University Press, Bangkok. 851 p. (In Thai).
- Wongrat, L. 1999b. Zooplankton. Kasetsart University Press, Bangkok. 744 p. (In Thai).